Sonic Physics Guide

From Sonic Retro

Revision as of 06:34, 14 December 2020 by Lapper2 (talk | contribs) (New formatting and descriptions updated)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ROM Hacks make the process of developing a functional Sonic game with unique art, enemies, and modifications much easier, since the game engine and basic mechanics are already functional. However, if the game requires a different game engine, modifying existing low-level assembly may be inappropriate, and some game designers might choose to program their own unique game engine. The physics of a game engine are rules that describe how to transform the player's input (either in the form of buttons, keyboard, or even a mouse if the designer feels inclined) into appropriate changes in the position of the sprites in the game (such as the Sonic sprite, or alternatively, how enemy sprites will respond). These physics guides will hopefully make the process of simulating the rules used in Sonic games easier.

Since the rules themselves are independent of how they are implemented, many people choose programming languages such as Java, C, C++, Python, or a Lisp dialect to implement game physics. In addition, people can choose to use more specialized applications like Adobe Flash (Animate), GameMaker Studio 2, or a Clickteam program like Multimedia Fusion 2.

Hopefully, these guides will provide adequate information to facilitate implementation.

Physics Guides

A prerequisite for much of the info on this guide.


A detailed description of how sloped terrain is constructed, and how objects use sensors to collide with it.

How Sonic moves with momentum over angled surfaces, along with the specific physics for actions such as rolling.

Explaining object hitboxes, solidity, Sonic's hitbox, and other ways objects directly interact with Sonic.


Describing how horizontal inputs control Sonic.

Sonic's jump and acceleration in the air.

Physics and quirks of rolling.

How objects such as rings, enemies, blocks, and springs move around, are constructed, and react to certain situations.

The order of events for objects, including characters.


How rings disperse when hit.

What happens when Sonic gets hit.

Describing how Sonic bounces off enemies and other destroy-able items.

How Sonic's abilities change underwater.

How Sonic's abilities change when super.

Specific abilities such as spindash, flying, gliding, and elemental shields.


Mechanics of the camera following Sonic.

Covering how animations play and specific animation timings.